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Abstract. For a general quantal system, physical properties of the finite difference between
a pair of density operators are derived and a complete set of generators for the associated 2-
subspace is obtained. Each infinitesimal step in any general ray-space evolution takes place in
the local 2-subspace and can be equated to a ‘spin’ rotation for the equivaleré ppitticle.

Hence a completely general Hamiltonian implementing a given ray space evolution comprises
Pauli operators in the local 2-subspaces, constructed using the given density operator and its
differential. Dynamical phase identifies with the phase in a rotating reference frame in which
the ‘spin’ remains stationary. The transformation from this rotating frame to the laboratory frame
effects a parallel transport evolution, producing geometric phase. A density operator equation is
derived for geodesics. Geometric phase arises from the parallel transport of the local ‘spin’ and
equals minus half the integral of 2-subspace solid angles.

1. Introduction

In an adiabatic and cyclic evolution of a general quantal system, Berry [1] discerned a small
phase component of geometric origin. This seminal paper on geometric phase opened up a new
field of research. Geometric phase, determined solely by the geometry of the curve traced in
the ray space, manifests itself in completely general evolutions [2—7] covering a wide spectrum
[8-11] of scientific disciplines.

In this paper, we present a density operator-based, and hence gauge-invariant, formalism
for geometric phase and associated features of quantal evolutions, from a physicist’s viewpoint.
We delineate the properties of the finite differente between a pair of pure state density
operators of a general quantal system. Usingnd Ap, we construct a complete set of
generators for the related 2-sphere ray subspace (section 2), highlighting the physical operations
performable with each generator. In the limit of an infinitesimal separation between the pair of
rays, we characterize the differential density operato¢sction 3). We derive an expression
for the general curve lengthin the ray space (section 4) and examine its relationship with a
time—energy uncertainty principle discussed previously [12]. Showing that each infinitesimal
step of a general evolution is confined to the local 2-subspace, we express the most general
Hamiltonian; generating a given ray space evolution in terms of Pauli operators in local 2-
subspaces constructed frgnand ¢ (section 5). This leads to a natural physical delineation of
dynamical and geometric phase components, the latter originating from the parallel transport
(section 6) effected by the commutator betwgeand o, in H,. In section 7, we obtain
a density operator equation for geodesics. Section 8 expresses the general geometric phase
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5168 A G Wagh and V C Rakhecha

as the integral of the projected solid angles in 2-subspaces, evaluated with an appropriately
selected reference ray.

2. The difference density operator

A general wavefunctionr in the Hilbert space is shorn of its nhorm and phase information,

by multiplying it with a non-zero complex number, to be represented in the ray space by a

normalized rayy. An n-state wavefunction therefore hag 2"~ complex, i.e.(2n — 2)-

dimensional real, ray space. The pure state density opgrato¥ W'/ wiw = yyTisthus a

ray space quantity with the propertigs= p, p? = p and Trp = 1. Furthermore, the density

operator is gauge invariant, unlike the ray. Curves, surfaces and evolutions in the ray space

can therefore be described in terms of the density operator in a gauge-independent manner.
For two distinct density operatoyg = p andp, = p + Ap, say, in the ray space, the

difference operatonp is Hermitian and traceless. Using the equalitiess Ap)2 = p + Ap

andp? = p, we obtain

Ap = pAp+(Ap)p + (Ap)2. (1)
On post- and pre-multiplying equation (1) with we obtain
(Ap)2p = p(Ap)* = —p(Ap)p = p(Ap)°p = p Tr p(Ap)? = p(AD)?. )

HereAl = AS/2 denotes the semi-distance between the two rays, defined by the relation
(AD? =1— [Y{volP =1=Trp(p+ Ap) = —TrpAp =Trp(Ap)%.  (3)
Equation (2) shows that the operatadrp)? commutes withp. Similarly,
(Ap)%(p + Ap) = (p + Ap)(Ap)? = (p + Ap)(AD? @

i.e. (Ap)? also commutes witlp + Ap. It therefore commutes with every density operator
representing an arbitrary linear combinatioryafandr,, i.e. belonging to the ray subspace
shared byp; andp,. This implies that

(3

whereT is the two-dimensional projector, the unity operator for this 2-subsface = 2) and
a null operator for all rays orthogonal to this subspace. Pre- or post-multiplying equation (1)
with Ap, dividing by (Al)? and using equation (5), we obtain

Ap\? Ap Ap _
(Al> =pt Py tar=ptp=1 (6)
Thus the density operatpr= (Ap/Al)p(Ap/Al)+ Ap corresponds to the ray; orthogonal
to 1 and co-habiting the 2-subspace (cf equation (10)).
Any density operator belonging to this 2-subspace may be expresgeea& +o-s,) /2.
The corresponding ray, then gets represented by the directign= Tr p,o on theC P!
complex, i.e. 2-sphere real, ray subspace. Heie the vector of the Pauli spin operators
in this 2-subspace and a null operator for rays orthogonal to the subspace. Hence the finite
difference ratio

Ap As

=  —_ = i 7
NN G ()
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becomes the component @falong the direction of the differenaes = s, — s; between the
respective directions in the 2-subspace associated with the/zagsd ;. Sinceajif =17,
the unitary operation
. o Ap |«
exp(—iogra/2) =1 —7T+71COS— —1— SIn— 8
p(—logira/2) 5 Al 5 (8)

effects a rotatiorx about the directiomvs/AS in this 2-subspace and leaves the remaining
n — 2 substates of the wavefunction, orthogonal to this subspace, unaltered. isl¢ne full
unity operator (Td = n).

The vectorAs bisects the directions; and—s». A 7 rotation aboutAi therefore takes
s1 to —s,. Hence the operation (8) with = 7 brings the ray/; to the rayyr, orthogonal to
¥, in the 2-subspace and represented by the density op@ratioe.

Ap Ap

.Ap — I
Alwl Vo, = Da=ptAp LN, 02 )

The samer rotation operation takes the unit vectgrto —s; and hence the ray, to the ray

Y, corresponding to the density operagoorthogonal tgo in the 2-subspace. Thus

_  _ Ap Ap  Ap Ap
PL=p=— (p+ Ap) AL = AP TAP P (10)
For a non-orthogonal pajr, p2, we can define a generator
oo PL=P2 _ p—(Ap/ADp(Ap/AD - s1tse (11)
BV Y V11— (AD? [s1+ s2]

namely the component ef along the vector sum of; ands,. The generator (11) operated
on byaoyir (7) leads to the generator

oL = 0y 0u = i[ o2, p1] _ i[Ap/AD, p] _ 5. SLX 82
o =Tt o) e 1 (AD)2 |s1 % 82

Thus oyum, o4iy ando form a trinity of & components along the triad of orthogonal unit
vectors parallel ta; + s5, s, — 57 ands; x s;, satisfying the familiar Pauli commutation and
anticommutation relations. For the 2-subspace definga, land o, therefore oy, 04if, 01

andZ constitute a complete set of generators. The ray 2-subspace is thus a unit 2-sphere of
‘spin’ directionss, and the distance/&l between raysr; and is the length of the chord
joining the tips of unit vectors; ands, on this 2-sphere. During the discussion of geodesics
(section 7), we will return to the generator.

12)

3. Density operator and its differential

Applying the limit Al — 0 to equations (1)—(3) and (5), we arrive at the following relations
for the Hermitian and traceless differentiad:d

do = pdp +(dp)p (13)
p(dp)p =0 Trpdp =0 (14)
and

do 2_ _ dp dp
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Equation (14) implies thatdp) ¢ is orthogonal toy. Up to the irrelevant factor-i in
equation (9), the unitary operatiomgd! takes the ray) to its orthogonal rayy in the 2-
subspace, i.e.

dp —
= 16
T4 (16)
corresponding to the density operator
_ ——t dp dp
= = —p— 17
pP=VvY =Py 17)

orthogonal top (cf equation (15)). One more operatiop @i/ brings the ray back tgr, due
to the identity (15). Each successive operati@nd hence flips the ray betweef and its
orthogonal rayy .

Any general differential variation@in p therefore takes place in the 2-subspace of the
orthogonal density operatogsand (dp/dl)p(dp/dl). As Al approaches zero, the generator
11)

do d
avu,n_)gé,zp——pp—pzzp—I (18)

becomes the component @falong the ‘spin’ directiors = Tr po of the equivalent spi@—
particle for the 2-subspace. In the lidit — 0, the generators (7) and (12) likewise tend to

do, ds dp

Oﬂdif_)ﬁzo-.ﬁza (19)
and
ds .[dp
ULea-sxﬁ_l[a,p] (20)

respectively.  For the local 2-subspace of the orthogonal density operatcasd
(dp/dl)p(dp/dl), the three generators (18)—(20) form the components cilong the
orthogonal directions, ds/dS ands x ds/dS.

4. Curve length and energy uncertainty

Adjacent rays represented by density operatanadp + dp are separated by the infinitesimal
length segment (cf equation (3))

dS=2d =2{/Tr p(dp)2. (21)
Hence the length of any curvktraversed in the ray space is given by

S = 2/ VTrp(dp)2. (22)

C

Since
Tr p(dp)? = ¥'(dp)*y = ¥ (dp) o)y = [[dp)¥]'([dp)¥] = lI(dp)¥/|1? (23)
and

dp)y =pdy = (Z — p)dy = dy — y(y" dy) (24)

it follows that
ds = 2||(dp)y || (25)
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i.e. the elementary curve lengtls ddentifies with twice the norm of the resolved part af d
orthogonal tay. Montgomery [13] expressed the semi-curve lendthgl

(d)? = (dy )" dy (26)
where

dy* =dy — ' dy)y (27)
symbolizes the part ofl orthogonal to),. Comparing equations (24) and (27), we note that

dyt = (dp)y (28)

thus establishing the equivalence between Montgomery’s and our expressions (26) and (21),
respectively, for the elementary curve length. Our result (21), however, expresses the gauge-
invariant length elementSidirectly in terms of the gauge-invariant operatprand cp.

So far we have taken the quantum kinematic approach, characterizing the ray space purely
in terms of a gauge-independent ray space quantity, namely the density operator. We have
taken recourse neither to a Hamiltonian driving a quantal system nor indeed to any equation
governing the evolution of the system. Anandan and Aharonov [12] derived the curve length
in the projective Hilbert (i.e. ray) space for a quantal system from itsg®ihger evolution in
a Hermitian HamiltoniarH. The corresponding density operator variation

— (dp
) = 2
Ih(dt) [H, o] (29)
operated on the wavefunctich yields
—(d
ih (d—f) U= (Hp — pH)¥ = HV — (H)¥ = (H — (H)o,) V. (30)

Hence the changédp) ¥, orthogonal toW, is produced in¥ by the parallel transport
Hamiltonian — (H)o,, namely that part of the Hamiltoniar which effects a change in the

ray ¢ (cf section 6 and equations (38) and (44)). The Hermitian conjugate of equation (30),
namely

—inwt (?j-f) =" — (H)oy) (31)
operated on equation (30) yields

2yt (92 t 2

hew o U =V'(H— (H)o,)" ¥ (32)
ie.

72 dp ? 2 2 2

heTrp o = (H%) — (H)* = (AE)~. (33)
HereAE signifies the energy uncertainty. The elementary curve length (21) therefore becomes

ds — 2A§ dr (34)

and the finite curve length

2 At
0

- (AE)At (35)

SN
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(AE) = OA’ AE dt/At denoting the time-averaged uncertainty in energy during the time
interval Az. For the curve length between two orthogonal rays which must at least zqual
namely the geodesic (cf section 7) length, Anandan and Aharonov arrived at the relation [12]

(AE)At > Zh (36)

and termed it a new and more stringent time—energy uncertainty principle. It is true that the
smaller the averaged uncertainty in energy, the longer a ray takes to traverse a given curve
lengthS (equation (35)). An eigenstate, for instance, has a null uncertainty in energy and the
ray therefore remains stationary & 0). However,At here is the time taken to traverse a
curve between a pair of orthogonal rays and does not quite represent the time uncertainty in the
spirit of Heisenberg’s principle. It would be more appropriate therefore to regard equation (36)
as just a restatement of the geometric fact that no curve joining a pair of orthogonal rays can
ever be shorter tham in length.

5. Ray space evolution

We will now extend results derived previously [14—20] for a two-state system, epitomized
by a spin% particle, to a general quantal system undergoing an arbitrary evolationn

the ray space. With each density operatpmwe may associate a ‘full’ Pauli-like operator
.8 = 2p — 1 and a corresponding ‘full spinS, defined over the entir¢2n — 2)-
dimensional real ray space, having a one-to-one correspondencepwitAs shown in
section 3, each infinitesimal step@@) in the evolution is confined to the 2-subspace of
the two orthogonal density operatopsr) and ppp/I? and their sumZ(z), the overdots
signifying differentiation with respect to time During this infinitesimal evolution, the
projections, = Z(1)X - SZ(t) = 2p — Z(¢) of this operator in the instantaneous 2-subspace
(cf equation (18)) alone becomes operational. The corresponding Pauli operaterds/dS

(cf equation (20)) evolves the ray in the 2-subspace, thus changing only the projeation
this 2-subspace of the full sp#. The projection ofS in the remaining2n — 4)-dimensional

ray subspace orthogonal to this 2-subspace remains unaltered during this time intatval d
This infinitesimal evolution yields the density operaggr + dr) with the associated full spin
S(t+dt). The next step d(z +dr) may in general occur in another 2-subspace characterized by
p(t+dt) and a correspondirifyz +dr). As p evolves, atriad of mutually orthogonal directions

in the ray space attached4¢), gets transported through the instantaneous 2-subspaces, along
the curve traversed in the ray space. A Hermitian Hamiltoiiagffects a unitary evolution

of the wavefunction. The corresponding ray space evolutigh then satisfies the relation
[H, p] = ikp. Since each infinitesimal step @) of this general evolution takes place in a
2-subspace, we can express the Hamiltonian at each indtatédrms of the generators (18)—
(20) appropriate for the 2-subspace visited during the time intervald A given evolution

p(t) can thus be implemented by any member of the infinite set of Hermitian Hamiltonians

R ey ws (1) do dp
H‘y—h{llp,ph > (p—apaﬂ (37)

w, (1) denoting an arbitrary real function of time. We have omitted here physically uninteresting
terms inZ and1 which would just add/ (1) phases to the wavefunction. The set of interaction
Hamiltonians may be expressed in terms of the local 2-subspace Pauli operators as

H, = %Ea s x s+ w(t)s}. (38)

The ray space evolution corresponds to successive ‘precessions’ [14] of instantaneous ‘spins’
s(¢t) about ‘magnetic fields’ [15, 1&} 5 (1) = s x s+ w,(t)s, expressed in appropriate angular
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velocity units. Only the first term it (equations (37) and (38)) brings about theariation,
since the second term commutes withIn a frame of reference say, rotating with a time-
dependent angular velociy x s, the instantaneous changes in the full s§idlue to these
rotations get continuously nullified. In this frametherefore the ray and the full spinS
remain fixed at their initial valueg; andS;, say, respectively. The inverse of the ordered
productU ~1(r) of successive unitary transformations given by

Ut = Pexp(—i fta -8 X édt/Z) (39)
0

yields the wavefunctiows, = U (¢) ¥ in the rotating frame. The wavefunctiony, evolves
satisfying the Sclidinger equation under the effective Hamiltonian [17]

H, = U U +iRUU ™ = dhoy(t) o - S (40)

for the rotating frame, corresponding to a ‘magnetic field’ [17, 18] of magnitudedirected

along the now stationary spi§;. This Hamiltonian effects a rotatiolf w,(z) dr of S;

about its own direction, implementing the evolutidn(r) = exp{— [iw,(¢) dr/2}¥;. The
wavefunction in the laboratory frame is then derived by making the inverse transformation at
timet, namely

() =Ut0) W, () = exp(— / i (1) dt/2>7?exp(—i/ o-sx .édt/2>‘~IJ,-. (42)
0

The operations of the two terms in (37) and (38) thus stand separated. The first term causes a
variation of the ray, while the second yields a pure dynamical phase [4, 19]

op = —/(H,>, dr/h = —%/a)s(t)dt = —/(Hth/ﬁ. (42)

The second term in the Hamiltonian (37) and (38) is thus the exclusive source of the dynamical
phase (42) acquired by the wavefunction during the evolution. The firstterm parallel transports
the wavefunction and transports the full s@rparallel to itself, generating a pure geometric
phase as shown in the next section. An evolution wherein the final ray coincides with the
initial ray (o = p;, 8y = §;), is said to be cyclic. The angle anholonomy associated with
the parallel transport part of a cyclic evolution equals the suf solid angles spanned in

the 2-subspaces traversed. The parallel transport operation is hence equivalent to a local spin
rotation equal to the angle anholonoftyaboutS; (= Sy) for the equivalent spir%— particle,
yielding exp(—iX - §;2/2)¥; = exp(—i2/2)¥;. The geometric phase, nhamely the parallel
transport phase anholonomy, is therefore givenH§y/2. The geometric phase acquired in

a non-cyclic evolution&, # S;) can be obtained similarly by suitably closing (cf section 8)
the open curve betwee andy; traced in the ray space.

Montgomery [13] separated the dynamical and geometric phase components
mathematically by integrating the decomposition @ ¢hto horizontal and vertical parts
(equation (27)). We have, on the other hand, highlighted here the physics underlying the
decomposition by adopting the rotating frame formalism.

Experimentally, the first clear separation of geometric and dynamical phases was achieved
neutron interferometrically [20]. For spin-polarized neutrons used in this experiment,
geometric and dynamical phases arose from a relative rotation and translation, respectively,
betweenr spin flippers in the two arms of the interferometer.
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6. Parallel transport

Kato [21] introduced the special Hamiltonian
H, = ih[p, p] (43)

as a generator of adiabatic evolutions. This Hamiltonian just equals the first term of the general
HamiltonianH, (37), obtained by setting,(¢) = 0. In terms of the locatr generators, it is
expressible as

ngz—fa-sxj—;. (44)
Each infinitesimal step exp-iH, dz/h) in the evolution under this Hamiltonian rotate®y
dsS about the directios x ds/dS, transverse ta. A triad in the ray space attachedd¢dence
propagates without ever twisting about the local nornsalse. gets transported parallel to

itself. The infinitesimal evolution takes the wavefunctigiy) to
W(t+dr) = exp(—iH, dt/h)¥(r) = exp(—io - s x ds/2)W(r)

= (cos(dS/Z)I+ sin(ds/2) o - g—; as> W(r)

= cos(d) W (¢) + sin(d)W (1) (45)

which is in phase with¥ () in accordance with the Pancharatnam connection [2, 3,6, 7, 22],
since the inner produdk ' (r) W (¢ + dr) = cos(dl) is real positive (cf equation (45)). Here the
normalized wavefunctioW (1) = (dp/dl) ¥ () is orthogonal tol (cfequations (16) and (19)).
Such an evolution, wherein wavefunctiob&) andW (1 +dr) before and after each infinitesimal
duration d are in phase, is said to parallel transport[7, 11, 23] the wavefunction. For any given
ray space variatiop (¢) therefore, the wavefunctio# can be parallel transported by choosing
the Hermitian Hamiltoniart, (43). When the directios x ds/dS is time dependent, the
parallel transport is non-trivial. The triaglx ds/dS—s—ds/dS attached to the ‘fields x s

then rotates with the instantaneous angular velocity [15, 17],

w,(t) =8 x 8 — ‘%(s x ds/dS)

s (46)

namely the difference between two mutually perpendicular vectors of magnjtuges = |s|
and|d (s x ds/dS)/df|. The magnitude

W, (1) = \/Iél2 +

of this angular velocity can never be less than the magnitsides| = |s| of the precession
rate for the spirs. The directions x ds/dS specifying the Hamiltoniaft,, must thus change

at least as fast ag which characterizes the ray. A non-trivial parallel transport evolution is
thereforenecessarily non-adiabatid 7].

The dynamical phase [ (H,) dt/k for the parallel transported wavefunction vanishes
identically, since(*,) = 0. In the Hamiltoniar#<,, an initial wavefunction¥; undergoes
an ordered evolutiorP exp(—i [ H, dt/h) to reach¥; = Pexp(—i [o-s x ds/2)V;,
acquiring a phase [2, 3,6, 7]

d; = arg\l/f\llf =argTrP exp(—i / o-8X ds/2>,0i

2

%(s x ds/dS) 47

— arg TrP exp( [ 1. p])p,» (48)
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which depends only on the geometry of the curve traced in the ray space. The phase
anholonomy of a parallel transport evolution is therefore the geometric pbaseFor a
given ray space evolution(t), the geometric phase is independent of the actual Hamiltonian,
i.e. of w,(r), selected from the infinite sé{; (equations (37) and (38)), to implement the
evolution.

In a general evolution effected by a Hamiltonign(37), the parallel transport component
H, (43), namely the first term in (37) corresponding to the component of the ‘magnetic field’
perpendicular to the instantaneous spin direction, alone evolves the spin and hence the ray,
producing a concomitant pure geometric phase. The geometric phase is independent of the
second term of{, (equations (37) and (38)), representing the component of the magnetic field
along the spis(7) which only makes the spin precess about its own direction, thus yielding the
dynamical phase. The dynamical phase thus generated by the non-parallel transport component
of the evolution, is hence integrable and Hamiltonian dependent, unlike the geometric phase.

7. Geodesics

The equation of a curve in the ray space can be expresspd=a(S), by specifying the
density operator as a function of the curve lengtimeasured from a fixed point on the curve.
We consider a curve along which

d?p
,—|=0 49

o] (49)
which on integration implies that the commutator

[dp

| —,p|=K 50

[ a p} (50)
say, remains invariant. In the Pauli operator representation,

d d d
K:i(o‘-%)(a-s):a-sx%:@ = sx%:c (51)

i.e. the unit vectoe denoting the direction normal to boshand ds/dS is a constant all along
the curve. A parallel transport evolution along this curve implemented by the Hamiltonian
H, = hiK (cf equations (43) and (44)) takes an initial wavefunctigrto

W, = cos(15)w; +sin(35)W;. (52)

Here the rayy; orthogonal to the initial ray is separated from it By= 7 along the curve.
The final wavefunctionV; is in phase [2, 3, 6, 7] witl; for traversed curve lengths < 7.
The final rayy  also remains constrained to the 2-subspace of the pair of orthogonat;rays
andy;. Since a parallel transport evolution produces a pure geometric phase (cf section 6),
the geometric phase vanishes identically [7, 24, 25] along a curve (50) of less thdangth.
Such a curve is a geodesic.

A differentiation of the operatar, = p — (dp/dl)p(dp/dl) (cf equations (18) and (19))
along a geodesic, namely

dlp — @p/dDp@p/dD] _ ,dp _dp _ [~ dp dpl [ " dp dol,
ds Tas T Al P=wPar | =P a

(53)
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do, . ds . .
a5 = —I(O’ +8 X £>(0s) = —io, = io, K (54)

is obtained by just pre-multiplying it with the invariant operataiC or post-multiplying with
its Hermitian conjugate. Applying this result repeatedly, we obtain

dVo, N

asy (=1K)" oy (55)
for any positive integeN. The special cas®¥ = 2 yields the second derivative

d?o, d?s

g5z = % T gz 8 0

which brings about a mere change of sigroin(ands). A geodesic therefore represents an
arc of a great circle for the spinon the 2-sphere subspace of orthogonal density operators
and(dp/dl)p(dp/dl). A geodesic between two rays andy, is hence the shortest possible
curve joining them and lies wholly in their 2-subspace, its invarkaiieing the operatas

(cf equation (12)) defined in terms of the commutator betwgesnd p».

We have defined a geodesic here as the curve along which a quantal state acquires an
identically null geometric phase. Conventionally, a geodesic is defined as the shortest curve
between any two rays through which it passes. We observe that the two definitions of a geodesic
are equivalent.

Beginning with the conventional definition of a geodesic, Montgomery [13] noted that the
time-independent Sctdinger equation defined ki generates a geodesic3rif and only if

[p, H?] = O. (57)

Here if H is assumed to be the Hamiltonian, equation (57) provides no constraint, since
H? = T(|5]* + w?)h?/4 (cf equation (38)) commutes with (i.e. H anticommutes withp)
regardless of the curve traced in the ray space. HowevAr i identified with the operator
d?p/ds?, Montgomery’s condition becomes identical to the geodesic equation (49).

8. Geometric phase

Geometric phase is the phase acquired by a parallel transported wavefunction and depends only
on the ray space geometry. The basic building block of geometric phase is the Pancharatnam 3-
vertex phase[2, 3, 7] associated with the triangle formed by shorter geodesics between mutually
non-orthogonal raygy, ¥1 andy,, say. The wavefunctiod, subjected to two successive
phase-preserving projections, i.e. filtering measurements, alongyragsid ¢, picks the
3-vertex geometric phase

g = arg Trpopzpr = arg TrpoZpzpZ = arg TrZpoZ p2p1 = arg Trpop p2p1. (58)

Here Z is the unity operator (5) for the 2-subspacemfand p,. The density operator
pop = IpoZ/ Tr poZ represents the normalized reng, = Zvo/+/Tr poZ along the projection
Ty of Yg in the 2-subspace af; andv,. Using equation (18), we may express the triangle
phase (58)

tanCIDA o Sop * 81 X 82
G=—

QA
l+sg,-81+81-82+52-50) 2
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The 3-vertex geometric phase thus equals minus half the solid angle subtended by the spherical
triangle formed by the shorter geodesics betweggpn v, and, i.e. by the shorter great
circle arcs joining the tips of the unit spin vectas, s1 ands,, at the centre of the 2-sphere
ray subspace. The Pancharatnam triangle plgs@ence depends solely on the ray space
geometry. It vanishes if and only if the triangle encloses null area, i.e. if theygys)/: and
Y, lie on a single geodesic of lengfhless thanr.

The triangle phase (58) can be expressed as

. 1-Tr 1-"Tr . Al Al :
sindl = _\/( popP1)( PopP2) sing = — w182 G (60)

Tr p102 /11— AI%Z

(cf equation (3)) in terms of the angfebetween the shorter geodesics joinifg, to > and
Y, and of the semidistances between the three pairs of these rays. In th&{iteibding
to the ray%op orthogonal toyr,, the triangle tends to an ‘orange’ slice between the two
geodesics of length each, joiningyo, and%op. The phaseb then tends to the angleg.
This is the phase jump encountered in a general evolution in passing a ray orthogonal to the
reference rayyg, discussed previously [7, 15, 26] and observed in optical [26] and neutron
[20, 27] interference experiments.

If 41 andyr, are separated infinitesimally; = p andp, = p +dp, i.e. the sping; = s
ands,; = s + ds, the triangle phase becomes

A dQﬁ iTr IOOp[IO: dp] 2
dos = 2 = oTieep (1—Trpopp)dep = —Al,d¢  (61)

where Al, denotes the semidistance betwefs, and+, i.e. half the length of the chord
joining the tips of unit spin vectorsy, ands.

The geometric phaskg (C) acquired in any general evolution fragn to ¢ » along a curve
C can be obtained [7] by integrating the phases (61) associated with contiguous infinitesimal
triangles having a common vertgx and bases formed by infinitesimal segments of the curve
C. Such an integral

r A r 1 A
@aCop = [ a0y = [ doe;
Pi P

i

or
= —/ (1 —Tr popp) dp = @G (C) + D5 (po, pis pf) (62)
Pi

equals the sum [2, 7] of the actual geometric phase acquired and the 3-vertex phase for the
triangleyo — ¥; — . Foracyclic evolution closed, i.ep; = p), the integral (62) yields
the correctd (C) irrespective of the referengg chosen, since the additional 3-vertex phase
vanishes identically (cf equation (58)). A changepgtorresponds to a gauge transformation
[7,15] of the rayyr. The gauge freedom is therefore complete for a cyclic evolutiod. idf
open, however, the reference rgy has to be selected so that the additional 3-vertex phase
vanishes, i.ey,, ¥; andy ; lie on a single geodesic shorter thanHereg, stands for the
normalized projection ofq in the 2-subspace af; andy . The gauge freedom thus becomes
restricted for a non-cyclic evolution.

Using a Stokes-like theorem, we may convert the line integral (62) into the integral [7, 28]

N N

of the curvature 2-form over the surfaSeenclosed by the curvé, closed if necessary by
joining its ends with the shorter geodesic. Singe=€ o - ds/2 = o - (d0 8 + sin6 d¢ ¢)/2
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(cf equations (18) and (19)) in terms of the orthogonal tdaéi—¢ in the local 2-subspace
[24], Trpdp Adp =isinddo dp/2 = idR2,/2. The phase (63) is therefore just minus half
the integral of the 2-subspace solid angles over the suffac¢he ray space.

9. Conclusions

Two non-orthogonal density operators of a quantal system characterize a complete set of
SU (2) generators (5), (7), (11) and (12) for their 2-sphere ray subspace. Each infinitesimal
displacement in the ray space takes place in the 2-subspace of orthogonal density operators
p and(dp/dl)p(dp/dl) (cf equations (15) and (17)). It can therefore be treated as a ‘spin’
precession for the equivalent sp%rparticle in an effective magnetic field. Any general ray-
space evolution comprises such successive ‘spin’ precessions in the local 2-subspaces. A
Hamiltonian (43) and (44) parallel transporting the ‘spin’ through successive 2-subspaces
produces a pure geometric phase. Dynamical phase is the phase acquired in a rotating frame
of reference- in which the ‘spin’ becomes stationary (cf equations (39) and (40)), latched to
the fixed direction of the effective magnetic field. A geodesic (cf equations (49), (50), (53)
and (56)) is an arc of a great circle on a 2-sphere ray subspace. An identically null geometric
phase is obtained along a geodesic of length less;thdn any general ray-space evolution,

the geometric phase (62) and (63) equals minus half the integral of projected solid angles in
the local 2-subspaces, evaluated with a proper choice of the reference ray.
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