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Abstract. For a general quantal system, physical properties of the finite difference between
a pair of density operators are derived and a complete set of generators for the associated 2-
subspace is obtained. Each infinitesimal step in any general ray-space evolution takes place in
the local 2-subspace and can be equated to a ‘spin’ rotation for the equivalent spin-1

2 particle.
Hence a completely general Hamiltonian implementing a given ray space evolution comprises
Pauli operators in the local 2-subspaces, constructed using the given density operator and its
differential. Dynamical phase identifies with the phase in a rotating reference frame in which
the ‘spin’ remains stationary. The transformation from this rotating frame to the laboratory frame
effects a parallel transport evolution, producing geometric phase. A density operator equation is
derived for geodesics. Geometric phase arises from the parallel transport of the local ‘spin’ and
equals minus half the integral of 2-subspace solid angles.

1. Introduction

In an adiabatic and cyclic evolution of a general quantal system, Berry [1] discerned a small
phase component of geometric origin. This seminal paper on geometric phase opened up a new
field of research. Geometric phase, determined solely by the geometry of the curve traced in
the ray space, manifests itself in completely general evolutions [2–7] covering a wide spectrum
[8–11] of scientific disciplines.

In this paper, we present a density operator-based, and hence gauge-invariant, formalism
for geometric phase and associated features of quantal evolutions, from a physicist’s viewpoint.
We delineate the properties of the finite difference1ρ between a pair of pure state density
operators of a general quantal system. Usingρ and1ρ, we construct a complete set of
generators for the related 2-sphere ray subspace (section 2), highlighting the physical operations
performable with each generator. In the limit of an infinitesimal separation between the pair of
rays, we characterize the differential density operator dρ (section 3). We derive an expression
for the general curve lengthS in the ray space (section 4) and examine its relationship with a
time–energy uncertainty principle discussed previously [12]. Showing that each infinitesimal
step of a general evolution is confined to the local 2-subspace, we express the most general
HamiltonianHs generating a given ray space evolution in terms of Pauli operators in local 2-
subspaces constructed fromρ and dρ (section 5). This leads to a natural physical delineation of
dynamical and geometric phase components, the latter originating from the parallel transport
(section 6) effected by the commutator betweenρ and dρ, in Hs . In section 7, we obtain
a density operator equation for geodesics. Section 8 expresses the general geometric phase
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as the integral of the projected solid angles in 2-subspaces, evaluated with an appropriately
selected reference ray.

2. The difference density operator

A general wavefunction9 in the Hilbert space is shorn of its norm and phase information,
by multiplying it with a non-zero complex number, to be represented in the ray space by a
normalized rayψ . An n-state wavefunction therefore has aCPn−1 complex, i.e.(2n − 2)-
dimensional real, ray space. The pure state density operatorρ = 99†/9†9 = ψψ† is thus a
ray space quantity with the propertiesρ† = ρ, ρ2 = ρ and Trρ = 1. Furthermore, the density
operator is gauge invariant, unlike the ray. Curves, surfaces and evolutions in the ray space
can therefore be described in terms of the density operator in a gauge-independent manner.

For two distinct density operatorsρ1 = ρ andρ2 = ρ + 1ρ, say, in the ray space, the
difference operator1ρ is Hermitian and traceless. Using the equalities(ρ +1ρ)2 = ρ +1ρ
andρ2 = ρ, we obtain

1ρ = ρ1ρ + (1ρ)ρ + (1ρ)2. (1)

On post- and pre-multiplying equation (1) withρ, we obtain

(1ρ)2ρ = ρ(1ρ)2 = −ρ(1ρ)ρ = ρ(1ρ)2ρ = ρ Tr ρ(1ρ)2 = ρ(1l)2. (2)

Here1l = 1S/2 denotes the semi-distance between the two rays, defined by the relation

(1l)2 = 1− |ψ†
1ψ2|2 = 1− Tr ρ(ρ +1ρ) = −Tr ρ1ρ = Tr ρ(1ρ)2. (3)

Equation (2) shows that the operator(1ρ)2 commutes withρ. Similarly,

(1ρ)2(ρ +1ρ) = (ρ +1ρ)(1ρ)2 = (ρ +1ρ)(1l)2 (4)

i.e. (1ρ)2 also commutes withρ + 1ρ. It therefore commutes with every density operator
representing an arbitrary linear combination ofψ1 andψ2, i.e. belonging to the ray subspace
shared byρ1 andρ2. This implies that(

1ρ

1l

)2

= I (5)

whereI is the two-dimensional projector, the unity operator for this 2-subspace(Tr I = 2) and
a null operator for all rays orthogonal to this subspace. Pre- or post-multiplying equation (1)
with 1ρ, dividing by(1l)2 and using equation (5), we obtain(

1ρ

1l

)2

= ρ +
1ρ

1l
ρ
1ρ

1l
+1ρ = ρ + ρ = I. (6)

Thus the density operatorρ = (1ρ/1l)ρ(1ρ/1l)+1ρ corresponds to the rayψ1 orthogonal
toψ1 and co-habiting the 2-subspace (cf equation (10)).

Any density operator belonging to this 2-subspace may be expressed asρa = (I+σ·sa)/2.
The corresponding rayψa then gets represented by the directionsa = Tr ρaσ on theCP 1

complex, i.e. 2-sphere real, ray subspace. Hereσ is the vector of the Pauli spin operators
in this 2-subspace and a null operator for rays orthogonal to the subspace. Hence the finite
difference ratio

1ρ

1l
= σ · 1s

1S
= σdif (7)
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becomes the component ofσ along the direction of the difference1s = s2− s1 between the
respective directions in the 2-subspace associated with the raysψ2 andψ1. Sinceσ 2

dif = I,
the unitary operation

exp(−iσdif α/2) = 1− I + I cos
α

2
− i
1ρ

1l
sin

α

2
(8)

effects a rotationα about the direction1s/1S in this 2-subspace and leaves the remaining
n− 2 substates of the wavefunction, orthogonal to this subspace, unaltered. Here1 is the full
unity operator (Tr1 = n).

The vector1s bisects the directionss1 and−s2. A π rotation about1s therefore takes
s1 to−s2. Hence the operation (8) withα = π brings the rayψ1 to the rayψ2 orthogonal to
ψ2 in the 2-subspace and represented by the density operatorρ2, i.e.

−i
1ρ

1l
ψ1 = ψ2 ⇒ ρ2 = ρ +1ρ = 1ρ

1l
ρ
1ρ

1l
= I − ρ2. (9)

The sameπ rotation operation takes the unit vectors2 to−s1 and hence the rayψ2 to the ray
ψ1 corresponding to the density operatorρ orthogonal toρ in the 2-subspace. Thus

ρ1 = ρ =
1ρ

1l
(ρ +1ρ)

1ρ

1l
= 1ρ

1l
ρ
1ρ

1l
+1ρ = I − ρ. (10)

For a non-orthogonal pairρ1, ρ2, we can define a generator

σsum = ρ1− ρ2√
Tr ρ1ρ2

= ρ − (1ρ/1l)ρ(1ρ/1l)√
1− (1l)2

= σ · s1 + s2

|s1 + s2| (11)

namely the component ofσ along the vector sum ofs1 ands2. The generator (11) operated
on byσdif (7) leads to the generator

σ⊥ = iσdif σsum = i[ρ2, ρ1]√
(1− Tr ρ1ρ2)Tr ρ1ρ2

= i[(1ρ/1l), ρ]√
1− (1l)2

= σ · s1× s2

|s1× s2| . (12)

Thusσsum, σdif andσ⊥ form a trinity of σ components along the triad of orthogonal unit
vectors parallel tos1 + s2, s2− s1 ands1× s2, satisfying the familiar Pauli commutation and
anticommutation relations. For the 2-subspace defined byρ1 andρ2 therefore,σsum, σdif , σ⊥
andI constitute a complete set of generators. The ray 2-subspace is thus a unit 2-sphere of
‘spin’ directionssa and the distance 21l between raysψ1 andψ2 is the length of the chord
joining the tips of unit vectorss1 ands2 on this 2-sphere. During the discussion of geodesics
(section 7), we will return to the generatorσ⊥.

3. Density operator and its differential

Applying the limit1l → 0 to equations (1)–(3) and (5), we arrive at the following relations
for the Hermitian and traceless differential dρ:

dρ = ρ dρ + (dρ)ρ (13)

ρ(dρ)ρ = O Tr ρ dρ = 0 (14)

and (
dρ

dl

)2

= I = ρ +
dρ

dl
ρ

dρ

dl
. (15)
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Equation (14) implies that(dρ)ψ is orthogonal toψ . Up to the irrelevant factor−i in
equation (9), the unitary operation dρ/dl takes the rayψ to its orthogonal rayψ in the 2-
subspace, i.e.

dρ

dl
ψ = ψ (16)

corresponding to the density operator

ρ = ψ ψ† = dρ

dl
ρ

dρ

dl
(17)

orthogonal toρ (cf equation (15)). One more operation dρ/dl brings the ray back toψ , due
to the identity (15). Each successive operation dρ/dl hence flips the ray betweenψ and its
orthogonal rayψ .

Any general differential variation dρ in ρ therefore takes place in the 2-subspace of the
orthogonal density operatorsρ and(dρ/dl)ρ(dρ/dl). As1l approaches zero, the generator
(11)

σsum→ σs = ρ − dρ

dl
ρ

dρ

dl
= 2ρ − I (18)

becomes the component ofσ along the ‘spin’ directions = Tr ρσ of the equivalent spin-12
particle for the 2-subspace. In the limit1l→ 0, the generators (7) and (12) likewise tend to

σdif → dσs
dS
= σ · ds

dS
= dρ

dl
(19)

and

σ⊥ → σ · s× ds

dS
= i

[
dρ

dl
, ρ

]
(20)

respectively. For the local 2-subspace of the orthogonal density operatorsρ and
(dρ/dl)ρ(dρ/dl), the three generators (18)–(20) form the components ofσ along the
orthogonal directionss, ds/dS ands× ds/dS.

4. Curve length and energy uncertainty

Adjacent rays represented by density operatorsρ andρ + dρ are separated by the infinitesimal
length segment (cf equation (3))

dS = 2 dl = 2
√

Tr ρ(dρ)2. (21)

Hence the length of any curveC traversed in the ray space is given by

S = 2
∫
C

√
Tr ρ(dρ)2. (22)

Since

Tr ρ(dρ)2 = ψ†(dρ)2ψ = ψ†(dρ)(dρ)ψ = [(dρ)ψ ]†[(dρ)ψ ] = ‖(dρ)ψ‖2 (23)

and

(dρ)ψ = ρ dψ = (I − ρ) dψ = dψ − ψ(ψ† dψ) (24)

it follows that

dS = 2‖(dρ)ψ‖ (25)
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i.e. the elementary curve length dS identifies with twice the norm of the resolved part of dψ
orthogonal toψ . Montgomery [13] expressed the semi-curve length dl as

(dl)2 = (dψ⊥)† dψ⊥ (26)

where

dψ⊥ = dψ − (ψ† dψ)ψ (27)

symbolizes the part of dψ orthogonal toψ . Comparing equations (24) and (27), we note that

dψ⊥ = (dρ)ψ (28)

thus establishing the equivalence between Montgomery’s and our expressions (26) and (21),
respectively, for the elementary curve length. Our result (21), however, expresses the gauge-
invariant length element dS directly in terms of the gauge-invariant operatorsρ and dρ.

So far we have taken the quantum kinematic approach, characterizing the ray space purely
in terms of a gauge-independent ray space quantity, namely the density operator. We have
taken recourse neither to a Hamiltonian driving a quantal system nor indeed to any equation
governing the evolution of the system. Anandan and Aharonov [12] derived the curve length
in the projective Hilbert (i.e. ray) space for a quantal system from its Schrödinger evolution in
a Hermitian HamiltonianH. The corresponding density operator variation

ih̄

(
dρ

dt

)
= [H, ρ] (29)

operated on the wavefunction9 yields

ih̄

(
dρ

dt

)
9 = (Hρ − ρH)9 = H9 − 〈H〉9 = (H− 〈H〉σs)9. (30)

Hence the change(dρ)9, orthogonal to9, is produced in9 by the parallel transport
HamiltonianH− 〈H〉σs , namely that part of the HamiltonianH which effects a change in the
ray ψ (cf section 6 and equations (38) and (44)). The Hermitian conjugate of equation (30),
namely

−ih̄9†

(
dρ

dt

)
= 9†(H− 〈H〉σs) (31)

operated on equation (30) yields

h̄29†

(
dρ

dt

)2

9 = 9†(H− 〈H〉σs)29 (32)

i.e.

h̄2 Tr ρ

(
dρ

dt

)2

= 〈H2〉 − 〈H〉2 = (1E)2. (33)

Here1E signifies the energy uncertainty. The elementary curve length (21) therefore becomes

dS = 21E dt

h̄
(34)

and the finite curve length

S = 2

h̄

∫ 1t

0
1E dt = 2

h̄
〈1E〉1t (35)
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〈1E〉 = ∫ 1t
0 1E dt/1t denoting the time-averaged uncertainty in energy during the time

interval1t . For the curve length between two orthogonal rays which must at least equalπ ,
namely the geodesic (cf section 7) length, Anandan and Aharonov arrived at the relation [12]

〈1E〉1t > 1
4h (36)

and termed it a new and more stringent time–energy uncertainty principle. It is true that the
smaller the averaged uncertainty in energy, the longer a ray takes to traverse a given curve
lengthS (equation (35)). An eigenstate, for instance, has a null uncertainty in energy and the
ray therefore remains stationary (S = 0). However,1t here is the time taken to traverse a
curve between a pair of orthogonal rays and does not quite represent the time uncertainty in the
spirit of Heisenberg’s principle. It would be more appropriate therefore to regard equation (36)
as just a restatement of the geometric fact that no curve joining a pair of orthogonal rays can
ever be shorter thanπ in length.

5. Ray space evolution

We will now extend results derived previously [14–20] for a two-state system, epitomized
by a spin-12 particle, to a general quantal system undergoing an arbitrary evolutionρ(t) in
the ray space. With each density operatorρ, we may associate a ‘full’ Pauli-like operator
Σ · S = 2ρ − 1 and a corresponding ‘full spin’S, defined over the entire(2n − 2)-
dimensional real ray space, having a one-to-one correspondence withρ. As shown in
section 3, each infinitesimal step dρ(t) in the evolution is confined to the 2-subspace of
the two orthogonal density operatorsρ(t) and ρ̇ρρ̇/l̇2 and their sumI(t), the overdots
signifying differentiation with respect to timet . During this infinitesimal evolution, the
projectionσs = I(t)Σ · SI(t) = 2ρ − I(t) of this operator in the instantaneous 2-subspace
(cf equation (18)) alone becomes operational. The corresponding Pauli operatorσ ·s×ds/dS
(cf equation (20)) evolves the ray in the 2-subspace, thus changing only the projections in
this 2-subspace of the full spinS. The projection ofS in the remaining(2n− 4)-dimensional
ray subspace orthogonal to this 2-subspace remains unaltered during this time interval dt at t .
This infinitesimal evolution yields the density operatorρ(t + dt) with the associated full spin
S(t+dt). The next step dρ(t+dt)may in general occur in another 2-subspace characterized by
ρ(t +dt) and a correspondingI(t +dt). Asρ evolves, a triad of mutually orthogonal directions
in the ray space attached tos(t), gets transported through the instantaneous 2-subspaces, along
the curve traversed in the ray space. A Hermitian HamiltonianH effects a unitary evolution
of the wavefunction. The corresponding ray space evolutionρ(t) then satisfies the relation
[H, ρ] = ih̄ρ̇. Since each infinitesimal step dρ(t) of this general evolution takes place in a
2-subspace, we can express the Hamiltonian at each instantt in terms of the generators (18)–
(20) appropriate for the 2-subspace visited during the time interval dt at t . A given evolution
ρ(t) can thus be implemented by any member of the infinite set of Hermitian Hamiltonians

Hs = h̄
{

i[ ρ̇, ρ] +
ωs(t)

2

(
ρ − dρ

dl
ρ

dρ

dl

)}
(37)

ωs(t)denoting an arbitrary real function of time. We have omitted here physically uninteresting
terms inI and1 which would just addU(1) phases to the wavefunction. The set of interaction
Hamiltonians may be expressed in terms of the local 2-subspace Pauli operators as

Hs = 1
2h̄σ · {s× ṡ + ωs(t)s} . (38)

The ray space evolution corresponds to successive ‘precessions’ [14] of instantaneous ‘spins’
s(t) about ‘magnetic fields’ [15, 16]ωB(t) = s× ṡ+ωs(t)s, expressed in appropriate angular
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velocity units. Only the first term inHs (equations (37) and (38)) brings about theρ variation,
since the second term commutes withρ. In a frame of referencer say, rotating with a time-
dependent angular velocitys × ṡ, the instantaneous changes in the full spinS due to these
rotations get continuously nullified. In this framer, therefore the rayψ and the full spinS
remain fixed at their initial valuesψi andSi , say, respectively. The inverse of the ordered
productU−1(t) of successive unitary transformations given by

U−1(t) = P exp

(
−i
∫ t

0
σ · s× ṡ dt/2

)
(39)

yields the wavefunction9r = U(t)9 in the rotating framer. The wavefunction9r evolves
satisfying the Schr̈odinger equation under the effective Hamiltonian [17]

Hr = UHsU−1 + ih̄U̇U−1 = 1
2h̄ωs(t)σ · Si (40)

for the rotating framer, corresponding to a ‘magnetic field’ [17, 18] of magnitudeωs directed
along the now stationary spinSi . This Hamiltonian effects a rotation

∫
ωs(t) dt of Si

about its own direction, implementing the evolution9r(t) = exp{− ∫ iωs(t) dt/2}9i . The
wavefunction in the laboratory frame is then derived by making the inverse transformation at
time t , namely

9(t) = U−1(t)9r(t) = exp

(
−
∫

iωs(t) dt/2

)
P exp

(
−i
∫ t

0
σ · s× ṡ dt/2

)
9i. (41)

The operations of the two terms in (37) and (38) thus stand separated. The first term causes a
variation of the ray, while the second yields a pure dynamical phase [4, 19]

8D = −
∫
〈Hr〉r dt/h̄ = − 1

2

∫
ωs(t) dt = −

∫
〈Hs〉 dt/h̄. (42)

The second term in the Hamiltonian (37) and (38) is thus the exclusive source of the dynamical
phase (42) acquired by the wavefunction during the evolution. The first term parallel transports
the wavefunction and transports the full spinS parallel to itself, generating a pure geometric
phase as shown in the next section. An evolution wherein the final ray coincides with the
initial ray (ρf = ρi,Sf = Si), is said to be cyclic. The angle anholonomy associated with
the parallel transport part of a cyclic evolution equals the sum� of solid angles spanned in
the 2-subspaces traversed. The parallel transport operation is hence equivalent to a local spin
rotation equal to the angle anholonomy� aboutSi (= Sf ) for the equivalent spin-12 particle,
yielding exp(−iΣ · Si�/2)9i = exp(−i�/2)9i . The geometric phase, namely the parallel
transport phase anholonomy, is therefore given by−�/2. The geometric phase acquired in
a non-cyclic evolution (Sf 6= Si) can be obtained similarly by suitably closing (cf section 8)
the open curve betweenψi andψf traced in the ray space.

Montgomery [13] separated the dynamical and geometric phase components
mathematically by integrating the decomposition of d9 into horizontal and vertical parts
(equation (27)). We have, on the other hand, highlighted here the physics underlying the
decomposition by adopting the rotating frame formalism.

Experimentally, the first clear separation of geometric and dynamical phases was achieved
neutron interferometrically [20]. For spin-polarized neutrons used in this experiment,
geometric and dynamical phases arose from a relative rotation and translation, respectively,
betweenπ spin flippers in the two arms of the interferometer.
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6. Parallel transport

Kato [21] introduced the special Hamiltonian

Hp = ih̄[ρ̇, ρ] (43)

as a generator of adiabatic evolutions. This Hamiltonian just equals the first term of the general
HamiltonianHs (37), obtained by settingωs(t) = 0. In terms of the localσ generators, it is
expressible as

Hp = h̄

2

dS

dt
σ · s× ds

dS
. (44)

Each infinitesimal step exp(−iHp dt/h̄) in the evolution under this Hamiltonian rotatess by
dS about the directions× ds/dS, transverse tos. A triad in the ray space attached tos hence
propagates without ever twisting about the local normalss, i.e. gets transported parallel to
itself. The infinitesimal evolution takes the wavefunction9(t) to

9(t + dt) = exp(−iHp dt/h̄)9(t) = exp(−iσ · s× ds/2)9(t)

=
(

cos(dS/2) I + sin(dS/2)σ ·
ds

dS
σs

)
9(t)

= cos(dl)9(t) + sin(dl)9(t) (45)

which is in phase with9(t) in accordance with the Pancharatnam connection [2, 3, 6, 7, 22],
since the inner product9†(t)9(t + dt) = cos(dl) is real positive (cf equation (45)). Here the
normalized wavefunction9(t) = (dρ/dl) 9(t) is orthogonal to9 (cf equations (16) and (19)).
Such an evolution, wherein wavefunctions9(t)and9(t+dt)before and after each infinitesimal
duration dt are in phase, is said to parallel transport [7, 11, 23] the wavefunction. For any given
ray space variationρ(t) therefore, the wavefunction9 can be parallel transported by choosing
the Hermitian HamiltonianHp (43). When the directions × ds/dS is time dependent, the
parallel transport is non-trivial. The triads × ds/dS–s–ds/dS attached to the ‘field’s× ṡ
then rotates with the instantaneous angular velocity [15, 17],

ωa(t) = s× ṡ−
∣∣∣∣ d

dt
(s× ds/dS)

∣∣∣∣s (46)

namely the difference between two mutually perpendicular vectors of magnitudes|s× ṡ| = |ṡ|
and|d(s× ds/dS)/dt |. The magnitude

ωa(t) =
√
|ṡ|2 +

∣∣∣∣ d

dt
(s× ds/dS)

∣∣∣∣2 (47)

of this angular velocity can never be less than the magnitude|s× ṡ| = |ṡ| of the precession
rate for the spins. The directions× ds/dS specifying the HamiltonianHp must thus change
at least as fast ass, which characterizes the ray. A non-trivial parallel transport evolution is
thereforenecessarily non-adiabatic[17].

The dynamical phase− ∫ 〈Hp〉 dt/h̄ for the parallel transported wavefunction vanishes
identically, since〈Hp〉 ≡ 0. In the HamiltonianHp, an initial wavefunction9i undergoes
an ordered evolutionP exp(−i

∫
Hp dt/h̄) to reach9f = P exp(−i

∫
σ · s× ds/2)9i ,

acquiring a phase [2, 3, 6, 7]

8G = arg9†
i 9f = arg TrP exp

(
−i
∫
σ · s× ds/2

)
ρi

= arg TrP exp

(∫
[dρ, ρ]

)
ρi (48)
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which depends only on the geometry of the curve traced in the ray space. The phase
anholonomy of a parallel transport evolution is therefore the geometric phase8G. For a
given ray space evolutionρ(t), the geometric phase is independent of the actual Hamiltonian,
i.e. of ωs(t), selected from the infinite setHs (equations (37) and (38)), to implement the
evolution.

In a general evolution effected by a HamiltonianHs (37), the parallel transport component
Hp (43), namely the first term in (37) corresponding to the component of the ‘magnetic field’
perpendicular to the instantaneous spin direction, alone evolves the spin and hence the ray,
producing a concomitant pure geometric phase. The geometric phase is independent of the
second term ofHs (equations (37) and (38)), representing the component of the magnetic field
along the spins(t)which only makes the spin precess about its own direction, thus yielding the
dynamical phase. The dynamical phase thus generated by the non-parallel transport component
of the evolution, is hence integrable and Hamiltonian dependent, unlike the geometric phase.

7. Geodesics

The equation of a curve in the ray space can be expressed asρ = ρ(S), by specifying the
density operator as a function of the curve lengthS measured from a fixed point on the curve.
We consider a curve along which[

ρ,
d2ρ

dS2

]
= O (49)

which on integration implies that the commutator

i

[
dρ

dl
, ρ

]
= K (50)

say, remains invariant. In the Pauli operator representation,

K = i

(
σ ·

ds

dS

)
(σ · s) = σ · s× ds

dS
= σc ⇒ s× ds

dS
= c (51)

i.e. the unit vectorc denoting the direction normal to boths and ds/dS is a constant all along
the curve. A parallel transport evolution along this curve implemented by the Hamiltonian
Hp = h̄l̇K (cf equations (43) and (44)) takes an initial wavefunction9i to

9f = cos
(

1
2S
)
9i + sin

(
1
2S
)
9i. (52)

Here the rayψi orthogonal to the initial ray is separated from it byS = π along the curve.
The final wavefunction9f is in phase [2, 3, 6, 7] with9i for traversed curve lengthsS < π .
The final rayψf also remains constrained to the 2-subspace of the pair of orthogonal raysψi
andψi . Since a parallel transport evolution produces a pure geometric phase (cf section 6),
the geometric phase vanishes identically [7, 24, 25] along a curve (50) of less thanπ in length.
Such a curve is a geodesic.

A differentiation of the operatorσs = ρ − (dρ/dl)ρ(dρ/dl) (cf equations (18) and (19))
along a geodesic, namely

d[ρ − (dρ/dl)ρ(dρ/dl)]
dS

= 2
dρ

dS
= dρ

dl
= −iK

[
ρ − dρ

dl
ρ

dρ

dl

]
= i

[
ρ − dρ

dl
ρ

dρ

dl

]
K

(53)
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i.e.

dσs
dS
= −i

(
σ · s× ds

dS

)
(σs) = −iKσs = iσsK (54)

is obtained by just pre-multiplying it with the invariant operator−iK or post-multiplying with
its Hermitian conjugate. Applying this result repeatedly, we obtain

dNσs
dSN

= (−iK)Nσs (55)

for any positive integerN . The special caseN = 2 yields the second derivative

d2σs

dS2
= −σs ⇒ d2s

dS2
= −s (56)

which brings about a mere change of sign inσs (ands). A geodesic therefore represents an
arc of a great circle for the spins on the 2-sphere subspace of orthogonal density operatorsρ

and(dρ/dl)ρ(dρ/dl). A geodesic between two raysψ1 andψ2 is hence the shortest possible
curve joining them and lies wholly in their 2-subspace, its invariantK being the operatorσ⊥
(cf equation (12)) defined in terms of the commutator betweenρ1 andρ2.

We have defined a geodesic here as the curve along which a quantal state acquires an
identically null geometric phase. Conventionally, a geodesic is defined as the shortest curve
between any two rays through which it passes. We observe that the two definitions of a geodesic
are equivalent.

Beginning with the conventional definition of a geodesic, Montgomery [13] noted that the
time-independent Schrödinger equation defined byH generates a geodesic inS if and only if

[ρ,H 2] = O. (57)

Here if H is assumed to be the Hamiltonian, equation (57) provides no constraint, since
H 2 = I(|ṡ|2 + ω2

s )h̄
2/4 (cf equation (38)) commutes withρ (i.e.H anticommutes with ˙ρ)

regardless of the curve traced in the ray space. However, ifH 2 is identified with the operator
d2ρ/dS2, Montgomery’s condition becomes identical to the geodesic equation (49).

8. Geometric phase

Geometric phase is the phase acquired by a parallel transported wavefunction and depends only
on the ray space geometry. The basic building block of geometric phase is the Pancharatnam 3-
vertex phase [2, 3, 7] associated with the triangle formed by shorter geodesics between mutually
non-orthogonal raysψ0, ψ1 andψ2, say. The wavefunction90 subjected to two successive
phase-preserving projections, i.e. filtering measurements, along raysψ1 andψ2 picks the
3-vertex geometric phase

81
G = arg Trρ0ρ2ρ1 = arg Trρ0Iρ2ρ1I = arg TrIρ0Iρ2ρ1 = arg Trρ0pρ2ρ1. (58)

Here I is the unity operator (5) for the 2-subspace ofρ1 and ρ2. The density operator
ρ0p = Iρ0I/Tr ρ0I represents the normalized rayψ0p = Iψ0/

√
Tr ρ0I along the projection

Iψ0 of ψ0 in the 2-subspace ofψ1 andψ2. Using equation (18), we may express the triangle
phase (58)

tan81
G = −

s0p · s1× s2

1 +s0p · s1 + s1 · s2 + s2 · s0p
⇒ 81

G = −
�1p

2
. (59)
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The 3-vertex geometric phase thus equals minus half the solid angle subtended by the spherical
triangle formed by the shorter geodesics betweenψ0p, ψ1 andψ2, i.e. by the shorter great
circle arcs joining the tips of the unit spin vectorss0p, s1 ands2, at the centre of the 2-sphere
ray subspace. The Pancharatnam triangle phase81

G hence depends solely on the ray space
geometry. It vanishes if and only if the triangle encloses null area, i.e. if the raysψ0p, ψ1 and
ψ2 lie on a single geodesic of lengthS less thanπ .

The triangle phase (58) can be expressed as

sin81
G = −

√
(1− Tr ρ0pρ1)(1− Tr ρ0pρ2)

Tr ρ1ρ2
sinφ = − 1lp11lp2√

1−1l212

sinφ (60)

(cf equation (3)) in terms of the angleφ between the shorter geodesics joiningψ0p toψ2 and
ψ1 and of the semidistances between the three pairs of these rays. In the limitψ1 tending
to the rayψ0p orthogonal toψ0p, the triangle tends to an ‘orange’ slice between the two
geodesics of lengthπ each, joiningψ0p andψ0p. The phase81

G then tends to the angle−φ.
This is the phase jump encountered in a general evolution in passing a ray orthogonal to the
reference rayψ0, discussed previously [7, 15, 26] and observed in optical [26] and neutron
[20, 27] interference experiments.

If ψ1 andψ2 are separated infinitesimally,ρ1 = ρ andρ2 = ρ + dρ, i.e. the spinss1 = s
ands2 = s + ds, the triangle phase becomes

d81
G = −

d�1p
2
= i Tr ρ0p[ρ, dρ]

2 Trρ0pρ
= −(1− Tr ρ0pρ) dφ = −1l2p dφ (61)

where1lp denotes the semidistance betweenψ0p andψ , i.e. half the length of the chord
joining the tips of unit spin vectorss0p ands.

The geometric phase8G(C) acquired in any general evolution fromψi toψf along a curve
C can be obtained [7] by integrating the phases (61) associated with contiguous infinitesimal
triangles having a common vertexψ0 and bases formed by infinitesimal segments of the curve
C. Such an integral

8G(C, ρ0) =
∫ ρf

ρi

d81
G = −

∫ ρf

ρi

1
2d�1p

= −
∫ ρf

ρi

(1− Tr ρ0pρ) dφ = 8G(C) +81
G(ρ0, ρi, ρf ) (62)

equals the sum [2, 7] of the actual geometric phase acquired and the 3-vertex phase for the
triangleψ0→ ψi → ψf . For a cyclic evolution (C closed, i.e.ρi = ρf ), the integral (62) yields
the correct8G(C) irrespective of the referenceρ0 chosen, since the additional 3-vertex phase
vanishes identically (cf equation (58)). A change ofρ0 corresponds to a gauge transformation
[7, 15] of the rayψ . The gauge freedom is therefore complete for a cyclic evolution. IfC is
open, however, the reference rayψ0 has to be selected so that the additional 3-vertex phase
vanishes, i.e.ψ0p, ψi andψf lie on a single geodesic shorter thanπ . Hereψ0p stands for the
normalized projection ofψ0 in the 2-subspace ofψi andψf . The gauge freedom thus becomes
restricted for a non-cyclic evolution.

Using a Stokes-like theorem, we may convert the line integral (62) into the integral [7, 28]

8G(C) = i
∫
S

Tr ρ dρ ∧ dρ = −
∫
S

1
2 d�p (63)

of the curvature 2-form over the surfaceS enclosed by the curveC, closed if necessary by
joining its ends with the shorter geodesic. Since dρ = σ · ds/2 = σ · (dθ θ + sinθ dφ φ)/2
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(cf equations (18) and (19)) in terms of the orthogonal triads–θ–φ in the local 2-subspace
[24], Tr ρ dρ ∧ dρ = i sinθ dθ dφ/2 = i d�p/2. The phase (63) is therefore just minus half
the integral of the 2-subspace solid angles over the surfaceS in the ray space.

9. Conclusions

Two non-orthogonal density operators of a quantal system characterize a complete set of
SU(2) generators (5), (7), (11) and (12) for their 2-sphere ray subspace. Each infinitesimal
displacement in the ray space takes place in the 2-subspace of orthogonal density operators
ρ and(dρ/dl)ρ(dρ/dl) (cf equations (15) and (17)). It can therefore be treated as a ‘spin’
precession for the equivalent spin-1

2 particle in an effective magnetic field. Any general ray-
space evolution comprises such successive ‘spin’ precessions in the local 2-subspaces. A
Hamiltonian (43) and (44) parallel transporting the ‘spin’ through successive 2-subspaces
produces a pure geometric phase. Dynamical phase is the phase acquired in a rotating frame
of referencer in which the ‘spin’ becomes stationary (cf equations (39) and (40)), latched to
the fixed direction of the effective magnetic field. A geodesic (cf equations (49), (50), (53)
and (56)) is an arc of a great circle on a 2-sphere ray subspace. An identically null geometric
phase is obtained along a geodesic of length less thanπ . In any general ray-space evolution,
the geometric phase (62) and (63) equals minus half the integral of projected solid angles in
the local 2-subspaces, evaluated with a proper choice of the reference ray.
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